138 research outputs found

    Hysteresis loops and adiabatic Landau-Zener-St\"uckelberg transitions in the magnetic molecule V6_6

    Get PDF
    We have observed hysteresis loops and abrupt magnetization steps in the magnetic molecule V6_6, where each molecule comprises a pair of identical spin triangles, in the temperature range 1-5 K for external magnetic fields BB with sweep rates of several Tesla/ms executing a variety of closed cycles. The hysteresis loops are accurately reproduced using a generalization of the Bloch equation based on direct one-phonon transitions between the instantaneous Zeeman-split levels of the ground state (an S=1/2S=1/2 doublet) of each spin triangle. The magnetization steps occur for B0B\approx 0 and they are explained in terms of adiabatic Landau-Zener-St\"{u}ckelberg transitions between the lowest magnetic energy levels as modified by inter-triangle anisotropic exchange of order 0.4 K.Comment: 4 pages, 3 figure

    Low-energy excitations in the S=(1/2) molecular nanomagnet K6[V<sub>15</sub><sup>IV</sup>As6O42(H2O)]·8H2O from proton NMR and µSR

    Get PDF
    Zero- and longitudinal-field muon-spin-rotation (µSR) and 1H NMR measurements on the S=(1/2) molecular nanomagnet K6[V15IVAs6O42(H2O)]·8H2O are presented. In LF experiments, the muon asymmetry P(t) was fitted by the sum of three different exponential components with fixed weights. The different muon relaxation rates lambdai (i=1,2,3) and the low-field H=0.23 T 1H NMR spin-lattice relaxation rate 1/T1 show a similar behavior for T>50 K: starting from room temperature they increase as the temperature is decreased. The increase of lambdai and 1/T1 can be attributed to the "condensation" of the system toward the lowest-lying energy levels. The gap Delta~550 K between the first and second S=(3/2) excited states was determined experimentally. For T<2 K, the muon relaxation rates lambdai stay constant, independently of the field value H<=0.15 T. The behavior for T<2 K strongly suggests that, at low T, the spin fluctuations are not thermally driven but rather originate from quasielastic intramolecular or intermolecular magnetic interactions. We suggest that the very-low-temperature relaxation rates could be driven by energy exchanges between two almost degenerate S=(1/2) ground states and/or by quantum effects

    Effect of ligand substitution on the exchange interactions in {Mn12}-type single-molecule magnets

    Full text link
    We investigate how the ligand substitution affects the intra-molecular spin exchange interactions, studying a prototypal family of single-molecule magnets comprising dodecanuclear cluster molecules [Mn12O12(COOR)16]. We identify a simple scheme based on accumulated Pauling electronegativity numbers (a.e.n.) of the carboxylate ligand groups (R). The redistribution of the electron density, controlled by a.e.n. of a ligand, changes the degree of hybridization between 3d electrons of manganese and 2p electrons of oxygen atoms, thus changing the exchange interactions. This scheme, despite its conceptual simplicity, provides a strong correlation with the exchange energies associated with carboxylate bridges, and is confirmed by the electronic structure calculations taking into account the Coulomb correlations in magnetic molecules.Comment: 18 pages, 1 table, 4 figures. Accepted to "Inorganic Chemistry

    Applying generalized Pad\'e approximants in analytic QCD models

    Full text link
    A method of resummation of truncated perturbation series, related to diagonal Pad\'e approximants but giving results independent of the renormalization scale, was developed more than ten years ago by us with a view of applying it in perturbative QCD. We now apply this method in analytic QCD models, i.e., models where the running coupling has no unphysical singularities, and we show that the method has attractive features such as a rapid convergence. The method can be regarded as a generalization of the scale-setting methods of Stevenson, Grunberg, and Brodsky-Lepage-Mackenzie. The method involves the fixing of various scales and weight coefficients via an auxiliary construction of diagonal Pad\'e approximant. In low-energy QCD observables, some of these scales become sometimes low at high order, which prevents the method from being effective in perturbative QCD where the coupling has unphysical singularities at low spacelike momenta. There are no such problems in analytic QCD.Comment: 14 pages; extended presentation of the analytic QCD models in Sec.IV; two references added ([37,38]); version to appear in Phys.Rev.

    Resummations of free energy at high temperature

    Get PDF
    We discuss resummation strategies for free energy in quantum field theories at nonzero temperatures T. We point out that resummations should be performed for the short- and long-distance parts separately in order to avoid spurious interference effects and double-counting. We then discuss and perform Pade resummations of these two parts for QCD at high T. The resummed results are almost invariant under variation of the renormalization and factorization scales. We perform the analysis also in the case of the massless scalar ϕ4\phi^4 theory.Comment: 16 pages, revtex4, 15 eps-figures; minor typographic errors corrected; the version as it appears in Phys.Rev.

    Calculating the energy spectra of magnetic molecules: application of real- and spin-space symmetries

    Full text link
    The determination of the energy spectra of small spin systems as for instance given by magnetic molecules is a demanding numerical problem. In this work we review numerical approaches to diagonalize the Heisenberg Hamiltonian that employ symmetries; in particular we focus on the spin-rotational symmetry SU(2) in combination with point-group symmetries. With these methods one is able to block-diagonalize the Hamiltonian and thus to treat spin systems of unprecedented size. In addition it provides a spectroscopic labeling by irreducible representations that is helpful when interpreting transitions induced by Electron Paramagnetic Resonance (EPR), Nuclear Magnetic Resonance (NMR) or Inelastic Neutron Scattering (INS). It is our aim to provide the reader with detailed knowledge on how to set up such a diagonalization scheme.Comment: 29 pages, many figure

    Building block libraries and structural considerations in the self-assembly of polyoxometalate and polyoxothiometalate systems

    Get PDF
    Inorganic metal-oxide clusters form a class of compounds that are unique in their topological and electronic versatility and are becoming increasingly more important in a variety of applications. Namely, Polyoxometalates (POMs) have shown an unmatched range of physical properties and the ability to form structures that can bridge several length scales. The formation of these molecular clusters is often ambiguous and is governed by self-assembly processes that limit our ability to rationally design such molecules. However, recent years have shown that by considering new building block principles the design and discovery of novel complex clusters is aiding our understanding of this process. Now with current progress in thiometalate chemistry, specifically polyoxothiometalates (POTM), the field of inorganic molecular clusters has further diversified allowing for the targeted development of molecules with specific functionality. This chapter discusses the main differences between POM and POTM systems and how this affects synthetic methodologies and reactivities. We will illustrate how careful structural considerations can lead to the generation of novel building blocks and further deepen our understanding of complex systems

    НАПРАВЛЕНИЯ СОВЕРШЕНСТВОВАНИЯ ОБРУДОВАНИЯ ДЛЯ ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ ТОНКОДИСПЕРСНыХ МАТЕРИАЛОВ

    No full text
    Проблема и ее связь с научными и практическими задачами. В связи с тем, что в поступающем на обогатительные фабрики сырье содержится до 30% ма-териала крупностью менее 1 мм, роль процесса флотации существенно возрас-тает. Этому способствует и возможность создания достаточно простых замкну-тых водно-шламовых схем, включающих флотацию в качестве основного эле-мента очистки оборотных вод. Многими исследованиями, которые проводились ранее и продолжают выполняться и в настоящее время, установлены направле-ния совершенствования этого достаточно сложного физико-химического про-цесс
    corecore